The Effect of Ammonia on the Leaching of Cu(II) and Cd(II) from Fly Ash

Jianmin Wang¹, Heng Ban², Xinjun Teng² and Ken Ladwig³

¹Department of Civil, Architectural & Environmental Engineering, University of Missouri-Rolla, Rolla, MO 65409; ²School of Engineering, University of Alabama at Birmingham, Birmingham, AL 35294; ³Electrical Power Research Institute (EPRI), 3412 Hillview Ave., Palo Alto, CA 94304

KEYWORDS: Cu(II), Cd(II), speciation, ammonia, fly ash

ABSTRACT

This paper presents a theoretical model for the adsorption/desorption of cation metals and metal-ammonia complexes on fly ash surfaces based on the experimental results. The effect of ammonia on the adsorption of Cu(II) and Cd(II) by a class F fly ash was investigated using a batch experimental method. Results indicated that high ammonia concentration (> 5000 mg/L) can significantly decrease the adsorption of these metals in the alkaline pH range. Based on theoretical analyses, a mathematical model was developed to quantify the ammonia effect on metal adsorption. The adsorption constants of free metal, metal-hydroxide species, and metal-ammonia complexes for the fly ash were determined by fitting the model to the experimental data. Metal speciation calculation indicated that the formation of less adsorbable metal-ammonia complexes resulted in the decrease of metal adsorption in alkaline pH range and, therefore, increased the metal leaching from fly ash under high ammonia concentrations.

Submitted for consideration in the 2005 World of Coal Ash, April 11-15, 2005, Lexington, Kentucky, USA.