Coal Combustion Products in Europe
- Present situation and (near) future -

Robert Carroll

European Coal Combustion Products Association
Content

1. Introduction – Role of coal in Europe

2. Impact of political decisions
 - Directives
 - Energy Plans

3. Impact of economics and markets

4. Production and utilisation of CCPs

5. Conclusion / Outlook
1 Introduction – The role of coal in Europe

Coal in Europe 2013
- Lignite production, hard coal production & imports

EU-28 million tonnes
- lignite: 407
- hard coal: 114
- imports: 216

Hard coal + Lignite
1 Introduction – The role of coal in Europe

Production of energy and steam in European power plants under continuous pressure
- to comply with legal requirements for clean air
- to meet market requirements on availability and economic production

Coal is still a major fuel for energy production
This results in ~ 145 million tonnes of Coal Combustion Products (CCPs) in Europe

Utilisation of CCPs is well established in some European countries. Availability is becoming a major problem in some member states and the management of CCPs to meet market needs is a critical task for power producers and marketers.
The most important Directives are:

- **IPPC Directive - Integrated Pollution Prevention and Control**
 (main principles for permitting and control of installations, integrated approach, application of Best Available Technique (BAT))

- **LCPD - Large Combustion Plant Directive**
 (aims to reduce acidification, ground level ozone and particulates by controlling emissions of \(\text{SO}_3 \), \(\text{NO}_x \) and dust from large combustion power plants)

- **IED - Industrial Emission Directive**
 (successor of IPPCD - aims in minimising pollution from various industrial sources, based on several principals: integrated approach, BAT, flexibility, inspections, public participation)

European Pollutant Release and Transfer Register (E-PRTR)
(replaces and improves the previous European Pollutant Emissions Register)
2 Impact of political decisions / EU Directives

Further Directives impacting CCPs are:

- **Waste Directive**
 The revised Waste Directive to avoid the disposal of the minerals and waste in power plants and to use them as valuable sources.

- **BREF LCP**
 The ongoing revision of the Reference Document on BAT for Large Combustion Plants (BREF LCP) with state-of-the-art technology and related emission limit values (ELV).
2 Impact of political decisions / Energy Plans

- Reduction of greenhouse gas emissions

 - Reduction of at least 20 % below 1990 level, 2020

European Trade System
 - Reduction of 30%

Present target
 - Reduction of 40%

Long-term commitment
 - Reduction of 80 to 95%, by 2050
2 Impact of political decisions / Energy Plans

- Increasing the share of renewable energy

 - Increasing the share of renewable energy to 20%

Present target
 - 27%, by 2030
2 Impact of political decisions / Energy Plans

- Improving the EU’s energy efficiency

- Improving the EU’s energy efficiency by 20%

Power Plant efficiency and CO₂ reduction potential of the European Power Industry

Source VGB
2 Impact of political decisions / Energy Plans

- Improving the EU’s energy efficiency

- Improving the EU’s energy efficiency by 20%

Power Plant efficiency and CO₂ reduction potential of the European Power Industry with CCS

Source VGB
New coal fired power plants will partly replace old power stations. They are designed to burn import coal as well as co-combustion of higher shares of co-combustion materials. The boilers and the process control devices are designed to produce fly ash for the use according EN 450-1 fly ash for concrete.

<table>
<thead>
<tr>
<th>Country</th>
<th>Name of Plant</th>
<th>Name of Company</th>
<th>Site of Plant</th>
<th>No. Units</th>
<th>Unit Cap. MW (gr.)</th>
<th>Tot. Cap. MW (el.)</th>
<th>Main Fuel</th>
<th>Project Start (Y)</th>
<th>Start up (Y)</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Germany</td>
<td>Datteln 4</td>
<td>E.ON</td>
<td>Datteln</td>
<td>1</td>
<td>1055,0</td>
<td>1,055,0</td>
<td>HC</td>
<td>2007</td>
<td>2013</td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>Walsum 10</td>
<td>STEAG/Evonik</td>
<td>Duisburg-Walsum</td>
<td>1</td>
<td>725,0</td>
<td>725,0</td>
<td>HC</td>
<td>2005</td>
<td>2013</td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>Moorburg 3-4</td>
<td>Vattenfall Europe</td>
<td>Hamburg-Moorburg</td>
<td>2</td>
<td>820,0</td>
<td>1,640,0</td>
<td>HC</td>
<td>2006</td>
<td>2014</td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>Westfalen D-E</td>
<td>RWE Power</td>
<td>Hemm-Uentrop</td>
<td>2</td>
<td>800,0</td>
<td>1,600,0</td>
<td>HC</td>
<td>2008</td>
<td>2013</td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>Rheinhaven RDK 8</td>
<td>EnBW</td>
<td>Karlsruhe</td>
<td>1</td>
<td>874,0</td>
<td>874,0</td>
<td>HC</td>
<td>2013</td>
<td></td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>Lünen</td>
<td>Trianel Power</td>
<td>Lünen</td>
<td>1</td>
<td>750,0</td>
<td>750,0</td>
<td>HC</td>
<td>2007</td>
<td>2013</td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>GKM9</td>
<td>Grosskraftwerk Mannheim AG</td>
<td>Mannheim</td>
<td>1</td>
<td>912,0</td>
<td>912,0</td>
<td>HC</td>
<td>2015</td>
<td></td>
<td>UCON</td>
</tr>
<tr>
<td>Germany</td>
<td>Wilhelms haven</td>
<td>GDF Suez, BKW Energie AG</td>
<td>Wilhelms haven</td>
<td>1</td>
<td>800,0</td>
<td>800,0</td>
<td>HC</td>
<td>2013</td>
<td></td>
<td>UCON</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Eemshaven</td>
<td>RWE Power</td>
<td>Eemshaven</td>
<td>1</td>
<td>1600,0</td>
<td>1,600,0</td>
<td>HC</td>
<td>2008</td>
<td>2014</td>
<td>UCON</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Maasvlakte 1</td>
<td>Electrabel</td>
<td>Rotterdam</td>
<td>1</td>
<td>750,0</td>
<td>750,0</td>
<td>HC</td>
<td>2007</td>
<td>2012</td>
<td>UCON</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Maasvlakte 3</td>
<td>E.ON Benelux</td>
<td>Maasvlakte</td>
<td>1</td>
<td>1100,0</td>
<td>1,100,0</td>
<td>HC</td>
<td>2006</td>
<td>2012</td>
<td>UCON</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Ledvice 4</td>
<td>CEZ AS</td>
<td>Ledvice</td>
<td>1</td>
<td>660,0</td>
<td>660,0</td>
<td>LIG</td>
<td>2013</td>
<td></td>
<td>UCON</td>
</tr>
<tr>
<td>Poland</td>
<td>Kozienice 11</td>
<td>Enea Wytwarzanie</td>
<td>Kozienice</td>
<td>1</td>
<td>1075,0</td>
<td>1,075,0</td>
<td>HC</td>
<td>2012</td>
<td>2017</td>
<td>UCON</td>
</tr>
</tbody>
</table>

Source: VGB
Today, most of the plants are designed as CCS-ready

CCS requires a 3-step approach:

- separation in the power plants,
- transport and
- storage

Main types of technologies existing to separate the CO$_2$ from the fuel or the flue gas:

- Post-combustion,
- Pre-combustion,
- Oxy-fuel
Impacts of CCS on CCPs

The new technologies for pre- and post-combustion will not have any impact on the resulting CCPs as there is no change in the coal combustion and the desulphurization process.

Due to higher burning temperature in the oxy-fuel process however an impact on CCP quality is expected.
3 Impact of economics and markets

Economic crisis started 2008 and is affecting industrial activities due to that the lower energy consumption

EU-28 Evolution of electricity supplied (in GWh)
2000-2013 annual data; 2008-2013 monthly data

Source: EUROSTAT
3 Impact of economics and markets

Furthermore, the shift from fossil fuels to renewable energy sources, such as hydropower, solar energy, wind power and biofuels has an impact on quantity and quality of CCPs.

Development of the production of primary energy (by fuel type), EU-28, 2002–12 (2002 = 100, based on tonnes of oil equivalent)

Source: EUROSTAT
Main factors decreasing coal utilisation for power production and thereby reducing CCPs production:

- Lower amount of energy consumption
- CO$_2$ reduction targets
- Share of renewable generation
- Investment cost of CCS-ready facilities
- Efficiency of new CCS plants
3 Impact of economics and markets

Main factors to increase coal utilisation for power production and by this also CCPs production:

- Stabilization of energy consumption and expectations of growing with economy improvement
- Coal availability
- Generation price in present power plants
- Natural gas and oil prices compared with coal
- CCPs management
4 Production and utilisation of CCPs

The result of politics and economics is reflected in production and utilisation of CCPs in Europe

<table>
<thead>
<tr>
<th></th>
<th>EU15</th>
<th>EU 28*</th>
<th>EU*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production [mill.t]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCPs total</td>
<td>54,644</td>
<td>>105</td>
<td>>145</td>
</tr>
<tr>
<td>ashes</td>
<td>42,915</td>
<td>>88</td>
<td>>124</td>
</tr>
<tr>
<td>desulph. products</td>
<td>11,729</td>
<td>>21</td>
<td>>21</td>
</tr>
<tr>
<td>utilisation rate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>construction ind.</td>
<td>51%</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>constr. + reclam.</td>
<td>87%</td>
<td>**</td>
<td>**</td>
</tr>
</tbody>
</table>

* Estimate based on coal consumption
** Information on utilisation only partly available
4 Production and utilisation of CCPs

Development of the production of CCPs in Europe (EU15) from 1993 to 2012
Cross border transport in Europe has been a solution to guarantee availability.

- 2008: 2.0 million tonnes
- 2009: 1.6 million tonnes
- 2010: 1.7 million tonnes
- 2011: 1.5 million tonnes
- 2012: 2.1 million tonnes
- 2013: 2.2 million tonnes
5 Conclusions

Over recent years the forecast for coal-fired power production and therefore production of CCPs has been inadequate and did not follow the expected trend based on political decisions and energy plans.

Coal is still a major fuel for power production! Due to construction of new power plants and national coal resources this is still valid for the near future in most member states. However, there is still uncertainty in the market about coal-fired power stations and therefore concern about availability of CCPs.

For the market Quality and Availability are most important. The direct production at power plants, processing of ash from direct production, the utilisation of stockpiles and cross border trade have to be considered the tools for safeguarding availability.
Acknowledgement

Dr Hans-Joachim Feuerborn, ECOBA

Members of ECOBA