Total Suspended Solids Monitoring During Ash Impoundment Construction Activities

Rachel Combs (TVA)
Gabe Lang, PE (AECOM)
Glen Dieterle, PE (AECOM)
Andrew Rodzianko, PE (AECOM)

05.07.2015
Agenda
TSS Monitoring During Ash Impoundment Construction Activities

1 Defining the Needs
2 Evaluation of Potential Impacts
3 Contingency Planning
4 Implementation
5 Summary of Findings
6 Questions and Answers
TSS Monitoring During Ash Impoundment Construction Activities

Defining the Needs

Three Construction Projects within an active Ash Settling Pond System

• Pond A Spillway Upgrade Project
• Dike Remediation Project
• Pond D Spillway Upgrade Project

Purpose for these projects

• Improve hydraulic performance
• Reduce risk
• Increase dike stability
• Provide operational flexibility
• Address regulatory requirements

Construction Concerns

• NPDES compliance, particularly:
 Exceeding TSS Permit Limits!
Monitoring During Ash Impoundment Construction Activities
Defining the Needs

The Pond System

POND A
POND B UPPER
POND B LOWER
POND C
POND D MAIN
POND D UPPER
POND E
OUTFALL 001

FLOW

1,000 FT
The Projects – Pond A Spillway Upgrade

- Lower operating level by 2 feet
- Add siphons as primary discharge structure and for additional hydraulic capacity
- Stabilize and rehabilitate existing riser structures
The Projects – Dike Remediation Project

- Re-grading of downstream face of dike slope along Stilling Ponds B and C
- Add rip rap bench for construction and future maintenance
- Provide vegetative cover on newly exposed dike surfaces
The Projects – Pond D Spillway Upgrade Project

• Construct new Primary Spillway System
• Install Permanent Check Dam
• Rehabilitate Existing Riser Structures for use as Secondary Spillways
• Installation of a new discharge structure at the Cumberland River
These projects present several common elements which have potential impact on water quality during the construction activities:

• Erosion of adjacent dike surfaces
• Erosion of newly exposed surfaces within the ponds due to lowering of the water levels (head-cutting)
• Decreased water levels/detention times for settling
• Increased flow velocities in the ponds (modification/redirection of flow path)
• Disturbance of and re-suspension of fine sediments within the ponds, especially near-neutrally buoyant cenospheres
• Increased particulate from construction materials (fines from rip rap and other granular fill materials)
Concurrent schedules also were also of concern, due to compounding of impacts from multiple projects

- Of greatest concern was concurrent construction of the Dike Remediation and Pond D projects due to their locations farther downstream in the settling pond flow path

<table>
<thead>
<tr>
<th>ID</th>
<th>Task Name</th>
<th>2014</th>
<th>2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Pond A Spillway Upgrade</td>
<td>8/1-1/10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dike Remediation Project</td>
<td>1/1-11/28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Pond D Spillway Upgrade</td>
<td>4/1-12/31</td>
<td></td>
</tr>
</tbody>
</table>

Duration of Concern
Monitoring During Ash Impoundment Construction Activities

Contingency Planning

A plan was developed to:

- Address all three projects
- Be flexible and revised based upon lessons learned from each successive project
- Define risk reduction measures
- Establish a monitoring network and procedures for monitoring
- Define action levels and notification procedures

Plan the work, Work the plan!
Remediation Measures:

• Turbidity curtains
 - Permanent and temporary curtains at critical points along the flow path

• Check dams
 - Used between Pond D Upper and Main to minimize loss of detention volume during drawdown phase

• Construction sequencing and method modifications
 - Dike Remediation performed in phases from downstream to upstream

• Flow modifications (temporary detention)
• Washing riprap at the quarry to minimize fine particulate
• Polymer injection for coagulation and enhanced settling
Establish Monitoring Network:

- At transition points between pond segments
- Detention time considerations
- Shown for Pond A project, points were adjusted or eliminated for subsequent projects
Understanding historical baseline performance:

- Reported **monthly** eDMR data for Outfall 001 prior to execution of the Pond A Spillway project
- Provides a target to meet during project execution
- Shows that some deviations can be expected

TSS Monitoring During Ash Impoundment Construction Activities
Contingency Planning

![Graph of TVA GAF Ash Pond Discharge TSS Levels]

Note: GAF NPDES Permit No. TN0005428 limits Total Suspended Solids concentrations at permitted Outfall 001 to a monthly average of 28 milligrams per liter (mg/L) and a daily maximum of 53 mg/L.
TSS Monitoring During Ash Impoundment Construction Activities
Contingency Planning

Setting of Action Level and associated monitoring point:

- Set assuming the most extreme measure would involve polymer addition
- Polymer injection point and action level set based upon previous studies by GE Betz, Inc.
- Action Level set at 25 ppm, measured at Sample Point #5
Selection of Monitoring Equipment:

- Considerations
 - Laboratory Analyses
 - Direct Reading Turbidity Meters
 - Direct Reading TSS Meters

- HACH, Prod. No. LXV322.99.00002 chosen
 - Portable
 - Real-time direct TSS readings
 - Ability to fine tune with multiple calibration “curves”
 - Economical, one time expense
 - Can self perform with minimal training
 - Now has successful track record
Readings were taken on a regular basis and reduced to graphical form for evaluation.
Pond A Results

TSS Monitoring During Ash Impoundment Construction Activities
Implementation

POND A DRAWDOWN BEGINS

FLY ASH SLUICE DITCH RE-ROUTED

25 mg/L ACTION LEVEL

HIGHEST READING AT POINT 5

POND A DRAWDOWN BEGINS

1.3" RAIN

2.2" RAIN

0.8" RAIN

0.6" RAIN

1.1" RAIN

NOTES:
MONTHLY AVERAGE TSS LIMIT: 28 mg/L
DAILY MAXIMUM TSS LIMIT: 93 mg/L

AECOM
TSS Monitoring During Ash Impoundment Construction Activities

Implementation

Dike Remediation and Pond D Results

DIKE REMEDIATION AND POND D SPILLWAY PROJECTS - Total Suspended Solids (TSS) w/ Hach Handheld TSS Probe

NOTES:
MONTHLY AVERAGE TSS LIMIT: 28 mg/L
DAILY MAXIMUM TSS LIMIT: 95 mg/L

- PLANT TEMPORARILY SHUTS DOWN TWO UNITS
- 1.1" RAIN
- 3.5" RAIN
- CUTTING AND FILLING AT POINT 2
- NEW PRIMARY SPILLWAY PLACED IN SERVICE; BEGIN POND D MAIN DRAWDOWN
- 2.3" RAIN
- POND D RETURNED TO NORMAL OPERATING ELEVATION
- 2.8" RAIN
- 1.0" RAIN
- 1.2" RAIN
- HIGHEST READING AT POINT 5

NEW METER CALIBRATION
01 Demonstrated the ability of the pond system to handle spikes and upsets
 • Most upsets were from causes not related to the construction activities
 - Operational changes
 - Weather related
 • Provided confidence and prevented the need to “over-react”

02 Contingency Planning paid off
 • Remediation measures worked
 • Never had to implement polymer injection
 • Construction sequencing for Dike Remediation and Pond D projects avoided concurrent additional solids loadings to the pond system
 - Completed Dike Remediation construction actually lowered average solids loading to the downstream portions of the pond system
 • Check dam for Pond D lowering was a tremendous success
 - Expedited drawdown and re-fill times
 - Maximized detention time in the stilling pond system during the drawdown (would have lost approximately 50% of volume in the stilling ponds without the check dam)
03 Meter calibration lessons learned

Calibration was an on-going effort throughout the projects due to:
- Varying physical properties of the suspended solids along the flow path
- Lack of “homogeneity”, especially at the less-dilute concentrations closer to the outfall (probably due to turbulence)
- Potentially other unknowns (persistence pays off!)

Best calibration was based upon a two-point calibration using a fly ash sluice ditch sample for the high end and Sample Point #5 for the low end

Even in the absence of a good calibration, relative readings were useful in assessing pond performance
Thank you
Please contact us for more information

Glen Dieterle
AECOM
216.622-2392
Glen.dieterle@aecom.com

Rachel Combs
TVA
423.751.2827
rsburnette@tva.gov