Human and Ecological Risk Characterization for the River System at the TVA Kingston Ash Recovery Project

Dan Jones (ARCADIS)
Mark Stack (Jacobs Engineering)
Suzy Young (ARCADIS)
Neil Carriker (Tennessee Valley Authority)
Acknowledgements
Outline

• Site Setting & History
• HHRA Highlights
• BERA Overview
• Risk Management
• Summary & Conclusions
Site Setting & History

December 22, 2008

~5.4 million cy coal ash

Unprecedented release

Dire predictions of ecosystem collapse
Watts Bar Reservoir

Emory River
- Reference—above ERM 6.0
- Reach C—ERM 3.5 to 6.0
- Reach B—ERM 1.5 to 3.5
- Reach A—ERM 0.0 to 1.5

Clinch River
- Reference—above CRM 4.5
- Reach B—CRM 3.0 to 4.5
- Reach A—CRM 0.0 to 3.0

Tennessee River
- Reference—above TRM 568
- Reach B—TRM 566 to 568
- Reach A—TRM 550 to 566
Time-Critical Removal Actions

Dredging in Emory River Reaches A & B from May, 2009 to June, 2010

~3.5 million cy of ash and sediment removed from the Emory River

~500,000 cy ash remaining, mostly in Emory River Reaches A & B
HHRA Approach

Examined multiple exposure scenarios

Used real, site-specific data

Followed EPA risk assessment guidance
HHRA Approach

Adult and Child Residents

Surface water
Household use as drinking water, without treatment

Fish Consumption
1 pound per week (fillet)

Adult and Adolescent Swimmers & Beachcombers

Surface water
Swimming 45 days a year
1.4 hours per day

Sediments
Beachcombing 48 days per year
(during winter pool when Watts Bar Reservoir is lowered)
HHRA Results

Confirmed risks from *legacy PCBs & Mercury* in fish tissues

TDEC fish consumption advisory pre-dating the spill

No unacceptable risks associated with residual ash

Agrees with 2010 TN DOH Public Health Assessment

Agrees with ORAU/Vanderbilt Medical Screenings
BERA Approach

- Comprehensive Investigation
- Rigorous Analysis
- Defensible, Reasonable Results
Comprehensive Protection of balanced communities or populations of:

- Fishes
- Benthic invertebrates
- Aquatic plants
- Aquatic- or riparian-feeding birds
 - Herbivores (wood duck)
 - Omnivores (mallard; killdeer)
 - Piscivores (osprey; great blue heron)
- Aquatic- or riparian-feeding mammals
 - Herbivores (muskrat)
 - Omnivores (raccoon)
 - Piscivores (mink)
- Aerial-feeding insectivores
 - Birds (tree swallow)
 - Mammals (gray bat)
- Aquatic- or riparian-feeding amphibians
- Aquatic- or riparian-feeding reptiles
Comprehensive

Field Studies (Biosurveys)
- Population and community data
 - Fish community
 - Benthic Invertebrate Community
 - Tree swallow nest box surveys
 - Turtle trapping

Laboratory Studies
- Toxicity tests
 - Surface water
 - Sediment and ash

Toxicity Benchmarks
- Literature-derived effects values
 - Concentrations in water and sediment
 - Concentrations in the receptor (tissue)
 - Concentrations in food items (diet)
Rigorous

Benthic Invertebrate Community Evaluation

- 15 benthic community transects annually
- Substrate characteristics
- % ash, grain size, chemistry
- Geospatial statistical analysis

Results

- Variations primarily due to habitat
- No clear and consistent relationship between community results and concentrations of ash or metals (arsenic)
Rigorous

Sediment Toxicity Tests

Screening
- Short-term, undiluted, 3 test species
- Emory and Clinch Rivers, 8 locations each

Chronic
- Long-term, dilution series, 2 test species
- Emory and Clinch Rivers, 4 locations each

Sediment Chemistry and Characteristics
- Metals, PAHs, PCBs, pesticides
- % ash, grain size, TOC

Multivariate Statistical Analysis
Rigorous

Sediment Toxicity Test Results

- Correlation of sediment toxicity with % ash and with arsenic concentration in sediments

- Minimal or no toxicity observed in sediments with less than about ~40% ash
BERA Results

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Potential Risk</th>
<th>Risk Mgmt</th>
<th>COECs</th>
<th>Lines of Evidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish</td>
<td>Ø</td>
<td></td>
<td></td>
<td>Community Surveys, Bioassays, Reproductive Studies, Tissue, Biomarkers, Surface Water</td>
</tr>
<tr>
<td>Benthic Invertebrates</td>
<td>(ER)</td>
<td>✓</td>
<td>As, Se</td>
<td>Community Surveys, Bioassays, Tissue, Porewater, Sediment</td>
</tr>
<tr>
<td>Birds</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscivore – Heron, Osprey</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omnivore – Mallard</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbivore – Wood Duck</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertivore – Killdeer</td>
<td>Ø</td>
<td>✓</td>
<td>As, Se</td>
<td></td>
</tr>
<tr>
<td>Aerial Insectivore – Tree Swallow</td>
<td>Ø</td>
<td>✓</td>
<td>As, Se</td>
<td></td>
</tr>
<tr>
<td>Mammals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Piscivore – Mink</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Omnivore – Raccoon</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Herbivores – Muskrat</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerial Insectivore – Gray Bat</td>
<td>Ø</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reptiles</td>
<td>Ø</td>
<td></td>
<td></td>
<td>Community Surveys, Tissue, Surface Water, Sediment</td>
</tr>
<tr>
<td>Amphibians</td>
<td>Ø</td>
<td></td>
<td></td>
<td>Tissue, Surface Water, Sediment</td>
</tr>
<tr>
<td>Aquatic Plants</td>
<td>Ø</td>
<td></td>
<td></td>
<td>Tissue, Surface Water, Sediment</td>
</tr>
</tbody>
</table>

 Ø = risks are negligible Ø = risks are low ☒ = risks are moderate ● = risks are high ✓ = risk management is recommended

COECs = constituents of ecological concern; ER = Emory River; CR = Clinch River
Risk Management

Remedial Action Objectives
- Protect invertebrate populations in Watts Bar Reservoir
- Protect shoreline-feeding & aerial-feeding bird populations that consume invertebrates

Risk Drivers
- Ash
- Arsenic and selenium
Risk Management

Remediation Goals (RGs)

- Sediment concentrations protective of benthic invertebrate populations (communities)
- Derived from site-specific sediment toxicity test results
- RG Range based on IC25s for the midge and amphipod
- Where sediment is > 50% ash:

 Arsenic = 29 to 41 (mg/kg, dry weight)
 Selenium = 3.0* to 3.2 (mg/kg, dry weight)

Tissue Monitoring Endpoints (TMEs)

- Concentrations in prey items (e.g., mayfly nymphs, adults)

 Arsenic = 34 to 81 (mg/kg, dry weight)
 Selenium = 7* (mg/kg, dry weight)

* Background reference concentration
Summary & Conclusions

Comprehensive Investigation

Rigorous Analysis

Defensible, Reasonable Results

Monitored Natural Recovery

Cost Savings:

$22 M vs. in situ capping

$162 M vs. dredging
Imagine the result

daniel.jones@arcadis-us.com